Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share

About

Degradation of mRNA is a fundamental process and knowledge about its mechanisms serves to better understand protein  synthesis and gene expression regulation. NMD mechanisms are an essential part of intracellular anti-viral control, shaped gene sequences during evolution, and are required for the development of complex organisms. The mechanistic detail of how RNA to be degraded is recognized and which are the factors involved in the process, remains to be clarified. Preliminary and recently published results allow us to ask new fundamental questions about the mechanisms of NMD (non-sense mediated mRNA decay) and mRNA degradation in general:

  1. What is the composition of NMD-related protein-RNA complexes?
  2. How is the degradation system recruited to mRNA substrates?
  3. How enzymes that degrade NMD substrates are activated?
  4. Predict cellular processes sensitive to NMD defects?

     

    NMDfactorsoverview
    NMD is a complex pathway that involves translation termination, the core Upf factors (1, 2, 3) decapping, deadenylation and potentially endonucleolytic cleavage of RNA.

To answer these questions we use affinity purification of RNA-protein and protein-protein complexes coupled with mass-spectrometry based quantitative estimation of protein components and RNASeq for RNA components, large scale genetic screens and classical phenotypic analysis of individual yeast mutant strains.

Our expertise in chemogenomic screens is useful in collaborative studies where the mechanism of action of a toxic compound is sought. Large-scale data analysis and visualization also pushed us to set up interactive graphical views for genetic interactions (PNAS, 2008, NAR, 2021) and protein-protein association results.

Our large-scale protein-protein interaction results on NMD, initially submited to the pre-print server biorxiv (https://www.biorxiv.org/content/early/2018/02/16/266833), are published (EMBOJ, 2018). They show that NMD factors associate in two mutually exclusive complexes around the RNA helicase Upf1. Our results led to the characterization of new direct partners of Upf1 in yeast, the Nmd4 and Ebs1 proteins, that are potential equivalents of human Smg6 and Smg5/7. How these RNA helicase partners affect RNA decay during NMD, what exactly happens on RNA substrates and to what extent these mechanisms are conserved in human cells are questions we are currently addressing.

image of two mRNA molecules having poly(A) tails and a question mark about whether the speed of deadenylation changes the stability of mRNA.Stimulated by our work on NMD, where deadenylation does not play a role in triggering mRNA degradation, we investigated the question of how the shortening of the poly(A) tail affects mRNA half-life. To our suprise, and contrary to the textbook version of mRNA degradation mechanisms in eukaryotes, we could not identify a global role for deadenylation in mRNA degradation. We used an inducible degron system to rapidly deplete the cell for deadenylation enzymes and Nanopore sequencing to estimate the levels of mRNA and the length of the poly(A) tails. Validating the Nanopore data, reporter mRNA poly(A) tails could be slowly deadenylated without any impact on the transcript half-life. The manuscript describing these results is present on biorxiv.

The complexity of RNA metabolism pathways require both biochemical and genetic tools for their investigation. We performed several hundred thousands measures for growth of strains in which two genes were affected. Since genes involved in the same pathway tend to respond similarly to the addition of a second mutation, these genetic interaction screens can be used to identify new factors involved in RNA metabolism. We developed a publication-based method to be able to infer function from genetic interaction profile similarity. An example of the large panel of cellular functions that were explored by our genetic screens in shown below. The genome-wide results, together with validations, showing, for example, the importance of Puf4-dependent post-transcriptional regulation of RPL9B expression, are available (NAR, 2021).

Literature-based network of genes
Literature-based clusters of related genes were combined with genetic interaction profile similarity. In orange, genes linked by literature and in blue, genes linked both by literature and our genetic screens data.

Online resources (interactive):

Genetic interaction profiles and double mutant effects in yeast (700 000 measurements, Nucleic Acids Res, 2021): hub05.hosting.pasteur.fr/GIM_interactions/

Protein interaction network for yeast NMD ( a set of 113 affinity purification and quantitative mass-spectrometry experiments, EMBO J, 2018): http://hub05.hosting.pasteur.fr/NMD_complexes/

screenshot of the interface for exploring the NMD protein network.

The initial data set of genetic interactions obtained by the GIM method (PNAS, 2008): http://hub05.hosting.pasteur.fr/PNAS2008/

Former Members

2000
2000
Name
Position
2014
2018
Marine Dehecq
PhD Student
2015
2016
Ophélie Lautier
Undergraduate Student
2011
2012
Luciana Lazar Stefanita
Undergraduate Student
2018
2021
Frank Feuerbach
Staff scientist
2018
2022
Léna Audebert
PhD Student
2019
2022
Agathe Gilbert
PhD Student

Courses

Multiple roles of RNAs

A practical course on RNA methods RNA research is at the basis of our current understanding of gene expression regulation and was crucial for the discovery of tools such as siRNA and CRISPR/Cas9. RNA […]

2023-02-13 09:00:00 2023-02-24 18:00:00 Europe/Paris Multiple roles of RNAs A practical course on RNA methods RNA research is at the basis of our current understanding of gene expression regulation and was crucial for the discovery of tools such as siRNA and CRISPR/Cas9. RNA […] 28 Rue du Docteur Roux, Paris, France

Projects

Fundings

Publications

Download

Contact

Phone: 01 44 38 92 80 Email: cosmin.saveanu@pasteur.fr Address 25-28 Rue du Docteur Roux 75015, Paris France