-
2024Physiological role and complex regulation of O2-reducing enzymes in the obligate anaerobe Clostridioides difficile., mBio 2024 Aug; (): e0159124.
-
2024From ubiquity to specificity: The diverse functions of bacterial thioredoxin systems., Environ Microbiol 2024 Jun; 26(6): e16668.
-
2024The multiplicity of thioredoxin systems meets the specific lifestyles of Clostridia., PLoS Pathog 2024 Feb; 20(2): e1012001.
-
2022The Viable But Non-Culturable State of Listeria monocytogenes in the One-Health Continuum., Front Cell Infect Microbiol 2022 ; 12(): 849915.
-
2018Discovery of new type I toxin-antitoxin systems adjacent to CRISPR arrays in Clostridium difficile, Nucleic Acids Res. 2018 May;46(9):4733-4751.
-
2017The alternative sigma factor σ plays a crucial role in adaptive strategies of Clostridium difficile during gut infection, Environ. Microbiol. 2017 May;19(5):1933-1958.
-
2016A Recombination Directionality Factor Controls the Cell Type-Specific Activation of σK and the Fidelity of Spore Development in Clostridium difficile, PLoS Genet. 2016 Sep;12(9):e1006312.
-
2014The regulatory network controlling spore formation in Clostridium difficile, FEMS Microbiol. Lett. 2014 Sep;358(1):1-10.
-
2014Pleiotropic role of the RNA chaperone protein Hfq in the human pathogen Clostridium difficile, J. Bacteriol. 2014 Sep;196(18):3234-48.
-
2014Riboswitch discovery by combining RNA-seq and genome-wide identification of transcriptional start sites, Meth. Enzymol. 2014;549:3-27.
-
2013Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile, PLoS Genet. 2013;9(10):e1003756.
-
2013Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile, PLoS Genet. 2013 May;9(5):e1003493.
-
2012PlcRa, a new quorum-sensing regulator from Bacillus cereus, plays a role in oxidative stress responses and cysteine metabolism in stationary phase, PLoS ONE 2012;7(12):e51047.
-
2012Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile, Nucleic Acids Res. 2012 Nov;40(21):10701-18.
-
2011Insights into the Rrf2 repressor family–the structure of CymR, the global cysteine regulator of Bacillus subtilis, FEBS J. 2011 Aug;278(15):2689-701.
-
2011The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile, J. Bacteriol. 2011 Jul;193(13):3186-96.
-
2010Global regulation of the response to sulfur availability in the cheese-related bacterium Brevibacterium aurantiacum, Appl. Environ. Microbiol. 2011 Feb;77(4):1449-59.
-
2010Global regulation of gene expression in response to cysteine availability in Clostridium perfringens, BMC Microbiol. 2010;10:234.
-
2010Complex phenotypes of a mutant inactivated for CymR, the global regulator of cysteine metabolism in Bacillus subtilis, FEMS Microbiol. Lett. 2010 Aug;309(2):201-7.
-
2010The pleiotropic CymR regulator of Staphylococcus aureus plays an important role in virulence and stress response, PLoS Pathog. 2010 May;6(5):e1000894.
-
2009Identification of brevibacteriaceae by multilocus sequence typing and comparative genomic hybridization analyses, Appl. Environ. Microbiol. 2009 Oct;75(19):6406-9.
-
2009CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation, Mol. Microbiol. 2009 Jul;73(2):194-211.
-
2008The CymR regulator in complex with the enzyme CysK controls cysteine metabolism in Bacillus subtilis, J. Biol. Chem. 2008 Dec;283(51):35551-60.
-
2008S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum, Nucleic Acids Res. 2008 Oct;36(18):5955-69.
-
2008Spx mediates oxidative stress regulation of the methionine sulfoxide reductases operon in Bacillus subtilis, BMC Microbiol. 2008 Jul;8:128.
-
2008Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis, BMC Syst Biol 2008;2:20.
-
2007Control of methionine synthesis and uptake by MetR and homocysteine in Streptococcus mutans, J. Bacteriol. 2007 Oct;189(19):7032-44.
-
2006Conversion of methionine to cysteine in Bacillus subtilis and its regulation, J. Bacteriol. 2007 Jan;189(1):187-97.
-
2006Global control of cysteine metabolism by CymR in Bacillus subtilis, J. Bacteriol. 2006 Mar;188(6):2184-97.
-
2005Regulation of the Bacillus subtilis ytmI operon, involved in sulfur metabolism, J. Bacteriol. 2005 Sep;187(17):6019-30.
-
2005The PatB protein of Bacillus subtilis is a C-S-lyase, Biochimie 2005 Feb;87(2):231-8.
-
2004Three different systems participate in L-cystine uptake in Bacillus subtilis, J. Bacteriol. 2004 Aug;186(15):4875-84.
-
2004The metNPQ operon of Bacillus subtilis encodes an ABC permease transporting methionine sulfoxide, D- and L-methionine, Res. Microbiol. 2004 Mar;155(2):80-6.
-
2002Global expression profile of Bacillus subtilis grown in the presence of sulfate or methionine, J. Bacteriol. 2002 Sep;184(18):5179-86.
-
2002Identification of Bacillus subtilis CysL, a regulator of the cysJI operon, which encodes sulfite reductase, J. Bacteriol. 2002 Sep;184(17):4681-9.
-
2002The metIC operon involved in methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination, Microbiology (Reading, Engl.) 2002 Feb;148(Pt 2):507-18.
-
2001CotA of Bacillus subtilis is a copper-dependent laccase, J. Bacteriol. 2001 Sep;183(18):5426-30.
-
2001Mutations lowering the phosphatase activity of HPr kinase/phosphatase switch off carbon metabolism, EMBO J. 2001 Aug;20(15):3928-37.
-
2001Sulfur-limitation-regulated proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study, Microbiology (Reading, Engl.) 2001 Jun;147(Pt 6):1631-40.
-
2001Characterization of glucose-repression-resistant mutants of Bacillus subtilis: identification of the glcR gene, Arch. Microbiol. 2001 Jun;175(6):441-9.
-
2000S-adenosylmethionine decarboxylase of Bacillus subtilis is closely related to archaebacterial counterparts, Mol. Microbiol. 2000 Jun;36(5):1135-47.
-
1999Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis, J. Bacteriol. 1999 Nov;181(22):6889-97.
-
1999The Q15H mutation enables Crh, a Bacillus subtilis HPr-like protein, to carry out some regulatory HPr functions, but does not make it an effective phosphocarrier for sugar transport, Microbiology (Reading, Engl.) 1999 Nov;145 ( Pt 11):3195-204.
-
1999The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis, J. Mol. Microbiol. Biotechnol. 1999 Aug;1(1):141-8.
-
1999Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon, J. Bacteriol. 1999 May;181(9):2966-9.
-
1999Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon, J. Mol. Biol. 1999 Feb;286(2):307-14.
-
1998PRD–a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria, Mol. Microbiol. 1998 Jun;28(5):865-74.
-
1998Antagonistic effects of dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR, Mol. Microbiol. 1998 Apr;28(2):293-303.
-
1997The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression, Proc. Natl. Acad. Sci. U.S.A. 1997 Aug;94(16):8439-44.
-
1997Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT, Mol. Microbiol. 1997 Jul;25(1):65-78.
-
1997Protein phosphorylation chain of a Bacillus subtilis fructose-specific phosphotransferase system and its participation in regulation of the expression of the lev operon, Biochemistry 1997 Feb;36(5):1163-72.
-
1996The levanase operon of Bacillus subtilis expressed in Escherichia coli can substitute for the mannose permease in mannose uptake and bacteriophage lambda infection, J. Bacteriol. 1996 Dec;178(24):7112-9.
-
1995Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon, J. Bacteriol. 1995 Dec;177(23):6919-27.
-
1995The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon, J. Bacteriol. 1995 Dec;177(23):6928-36.
-
1994Interactions of wild-type and truncated LevR of Bacillus subtilis with the upstream activating sequence of the levanase operon, J. Mol. Biol. 1994 Aug;241(2):178-92.
-
1992Mutagenesis of the Bacillus subtilis “-12, -24” promoter of the levanase operon and evidence for the existence of an upstream activating sequence, J. Mol. Biol. 1992 Jul;226(1):85-99.
-
1991The Bacillus subtilis sigL gene encodes an equivalent of sigma 54 from gram-negative bacteria, Proc. Natl. Acad. Sci. U.S.A. 1991 Oct;88(20):9092-6.
-
1991Positive and negative regulation controlling expression of the sac genes in Bacillus subtilis, Res. Microbiol. 1991 Sep-Oct;142(7-8):757-64.
-
1991The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both sigma 54- and phosphotransferase system-dependent regulators, Proc. Natl. Acad. Sci. U.S.A. 1991 Mar;88(6):2212-6.
-
1990Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon, J. Mol. Biol. 1990 Aug;214(3):657-71.
-
1987Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertase, Mol. Gen. Genet. 1987 Jun;208(1-2):177-84.