Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Michel-Robert Popoff
Clostridium difficile en microscopie à contraste de phase. On distingue des bactéries sporulées, non sporulées et d'autres en cours de lyse (destruction). Bactérie de l'environnement (sol, eau, foin, sable), elle est à l'origine d'infections nosocomiales survenant après un traitement antibiotique : Clostridium difficile prédomine alors que les autres bactéries de la flore intestinale ont été détruites. L'infection peut provoquer deux types de pathologies graves : les colites pseudo-membraneuses dont l'origine est quasiment due à 100 % à C. difficile et la diarrhée post-antibiothérapie due à C. difficile dans 30 % des cas de ces diarrhées.
Publication : Journal of molecular biology

Mutagenesis of the Bacillus subtilis “-12, -24” promoter of the levanase operon and evidence for the existence of an upstream activating sequence

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of molecular biology - 01 Jul 1992

Martin-Verstraete I, Débarbouillé M, Klier A, Rapoport G

Link to Pubmed [PMID] – 1619665

J. Mol. Biol. 1992 Jul;226(1):85-99

The levanase operon of Bacillus subtilis is controlled by RNA polymerase associated with sigma 54 factor and by the LevR activator that is homologous to the NifA/NtrC family of regulators. A “-12, -24” promoter is present at the appropriate distance from the transcription start site. The drastic down effect of base substitutions in the TGGCAC, TTGCA consensus sequence on the expression of the levanase operon confirmed the involvement of the “-12, -24” region in promoter function. Deletion derivatives of the upstream sequence of the operon promoter were constructed using translational levD’-‘lacZ fusions and were integrated as single copies at the amyE locus of the B. subtilis chromosome. A cis-acting DNA sequence that is required for activation of the operon promoter by LevR was identified. This regulatory sequence is about 50 base-pairs long and is centered 125 base-pairs upstream from the transcription start site in a region containing a 16 base-pair palindromic structure. This region of dyad symmetry functions as a regulatory element when placed up to at least 600 base-pairs upstream from the “-12, -24” promoter, although the efficacy of activation is lowered. Thus, in common with most sigma 54-dependent promoters, an upstream activating sequence (UAS) is involved in the control of expression of the levanase operon. The isolation and characterization of eight mutations in the UAS region confirmed the importance of the palindromic structure in promoter activation. Moreover, the expression of the levanase operon was inhibited by placing the UAS in trans on a multicopy plasmid, probably through titration of the LevR polypeptide. In conclusion, the levanase promoter region can be divided into two regulatory sequences: the “-12, -24” promoter recognized by the sigma 54 RNA polymerase holoenzyme and the UAS, an inverted repeat sequence that is probably the LevR binding site.

http://www.ncbi.nlm.nih.gov/pubmed/1619665