Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Michel-Robert Popoff
Clostridium difficile en microscopie à contraste de phase. On distingue des bactéries sporulées, non sporulées et d'autres en cours de lyse (destruction). Bactérie de l'environnement (sol, eau, foin, sable), elle est à l'origine d'infections nosocomiales survenant après un traitement antibiotique : Clostridium difficile prédomine alors que les autres bactéries de la flore intestinale ont été détruites. L'infection peut provoquer deux types de pathologies graves : les colites pseudo-membraneuses dont l'origine est quasiment due à 100 % à C. difficile et la diarrhée post-antibiothérapie due à C. difficile dans 30 % des cas de ces diarrhées.
Publication : Molecular microbiology

PRD–a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular microbiology - 01 Jun 1998

Stülke J, Arnaud M, Rapoport G, Martin-Verstraete I

Link to Pubmed [PMID] – 9663674

Mol. Microbiol. 1998 Jun;28(5):865-74

Several operon-specific transcriptional regulators, including antiterminators and activators, contain a duplicated conserved domain, the PTS regulation domain (PRD). These duplicated domains modify the activity of the transcriptional regulators both positively and negatively. PRD-containing regulators are very common in Gram-positive bacteria. In contrast, antiterminators controlling beta-glucoside utilization are the only functionally characterized members of this family from gram-negative bacteria. PRD-containing regulators are controlled by PTS-dependent phosphorylation with different consequences: (i) In the absence of inducer, the phosphorylated EIIB component of the sugar permease donates its phosphate to a PRD, thereby inactivating the regulator. In the presence of the substrate, the regulator is dephosphorylated, and the phosphate is transferred to the sugar, resulting in induction of the operon. (ii) In gram-positive bacteria, a novel mechanism of carbon catabolite repression mediated by PRD-containing regulators has been demonstrated. In the absence of PTS substrates, the HPr protein is phosphorylated by enzyme I at His-15. This form of HPr can, in turn, phosphorylate PRD-containing regulators and stimulate their activity. In the presence of rapidly metabolizable carbon sources, ATP-dependent phosphorylation of HPr at Ser-46 by HPr kinase inhibits phosphorylation by enzyme I, and PRD-containing regulators cannot, therefore, be stimulated and are inactive. All regulators of this family contain two copies of PRD, which are functionally specialized in either induction or catabolite repression.

http://www.ncbi.nlm.nih.gov/pubmed/9663674