Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
Scientific Fields
Diseases
Organisms
Applications
Technique

About

Our research program is focused on the analysis of parasite and host regulatory pathways implicated in intracellular parasite development and subversion of host cell functions that qualify as novel drug targets. The largely constitutive expression of the Leishmania genome at both transcript and protein levels raises the question on how these parasites can maintain different life cycle stages and how they can evolve intra-species divergence in drug susceptibility, tropism, and infectivity. Furthermore, the exploitation of immune sentinel cells (macrophages, dendritic cells) as niche to escape and subvert host immunity provides an interesting model system to gain insight into how intracellular pathogens co-evolve with their hosts and modulate host cell immune and metabolic functions to establish infection. We address these questions by investigating parasite-specific molecular mechanisms that govern Leishmania environmental adaptation using functional genetics, genomics, systems-level analyses. The research program of our Unit is animated through three research axes on complementary aspects of host/parasite interaction that allowed us to make a series of important discoveries:

Axis 1 investigates how Leishmania adapts to its hosts using two strategies: signal-induced stage differentiation and genomic adaptation. Systems analyses at the transcript, protein, and phosphoprotein levels of bona fide L. donovani amastigotes purified from the spleen of infected hamsters and derived promastigotes uncovered an unexpected reciprocal regulatory relationship between protein kinase and proteasome activities essential for parasite differentiation, thus defining both biological processes as fertile source for the discovery of novel drug targets (Pescher et al., in preparation). Comparative genomics analysis of Leishmania field isolates and conducting in vitro evolutionary studies using hamster-derived parasites revealed the highly dynamic and complex nature of Leishmania evolutionary adaptation that draws from a vast genetic landscape of spontaneous karyotypic fluctuations, stochastic gene amplifications, and nucleotide polymorphisms. We showed that these genetic fluctuations generate genotypically and phenotypically diverse mosaic populations that are substrate for Leishmania evolutionary adaptation and fitness gain in response to environmental change. Surprisingly, genomic adaptation occurred in a polyclonal fashion resulting in co-existing sub-populations that preserve the original genetic diversity. Our results define aneuploidies and gene copy number variations as a major source for Leishmania biomarker discovery, and challenge current, parasite-directed drug discovery strategies as these will drive the evolution of drug resistant phenotypes.

Axis 2 applies pharmacologic, genetic and systems level approaches to investigates Leishmania signaling pathways underlying adaptive stage differentiation and revealed essential roles for the Leishmania MAP kinases MPK4, 7, and 10 as well as the chaperones CyP40 and HRP4 in parasite viability and infectivity. Together with a series of functional proteomics studies using immobilized staurosporine or ATP our studies discovered and validated parasite ATP-binding proteins as important targets for anti-leishmanial therapy. Finally, we genetically and pharmacologically validated the parasite ecto-kinase LmCK1.2 as drug target with essential intra-parasitic functions, but also extracellular functions that modulate host cell signaling through direct phosphorylation of numerous host chaperones and transcription factors.

Axis 3 finally employs immunological, pharmacological and systems-level investigations to study the impact of intracellular Leishmania infection on macrophage phenotype and functions. Our data delivered the first demonstration that Leishmania establishes permissive conditions for persistent, intracellular survival by remodelling the host cell chromatin during infection, causing massive changes in host cell gene expression with important consequences on the macrophage metabolome and immune functions (Lecoeur et al., in revision). The discovery of a series of host-directed hit compounds in our phenotypic screening assay opens exciting new venues to target the host cell epigenome for anti-leishmanial intervention – a novel strategy that may be more refractory for the development of drug resistant Leishmania.

Our current and future research program will finalize the thematic transition toward systems-level analysis of Leishmania/host interaction through the coordination of the two major international projects that animate our three complementary Research Axes in the future: the EU-funded LeiSHield project (Axis 1) and our IPIN-funded International Mixed Unit (IMU) (Axes 2 and 3). Our major aims are (i) to reveal novel mechanisms of parasites genomic adaptation using our L. donovani LD1S experimental system that will directly inform our LeiSHield partner teams and their epidemiological field studies, and (ii) to assess the macrophage response to intracellular Leishmania infection and uncover mechanisms of parasite immune-subversion that will inform our IMU on parasite- and host-directed drug targets. The ultimate goal of our research project is to establish – through the LeiSHield and IMU collaborations – the genomic and immunological read outs as well as the experimental, computational, and clinical infrastructure to approach in the future one of the major open question in clinical Leishmania infection: How parasite genetic heterogeneity affects anti-leishmanial immunity and immuno-pathology, and vice versa how the genetic diversity of the host affects these responses and shapes the parasite phenotypic landscape and its pathogenic potential. 

 

Previous lab members – Trainees

Mariana Boté-Cortes, Fiocruz Brazil (RIIP visiting fellow, 3 months in 2017); Kyungwa Baek, IP Korea (RIIP fellow, 3 months, 2017); Kossiwa Kokou, IPShanghai (RIIP fellow, 3 months 2016); Evi Gouzelou, Hellenic Pasteur Institute (RIIP trainee, 4 months, 2015); Penny Smirlis, Hellenic Pasteur Institute (EU COST fellow, 1 month, 2015); Joo Hwan No, IP Korea (RIIP fellow, 1 month, 2014); Aymen Bali, (RIIP visiting fellow, 4 months, 2014); Penny Smirlis, Hellenic Pasteur Institute (RIIP trainee, 4 months, 2013); Grace Tewkesbury, Duke University (summer intern Pasteur Foundation, 2 months, 2013); Naouel Eddaikra, IP Alger (RIIP trainee, 1 month, 2013); Monica Gardner, IP Montevideo (RIIP trainee, 2 months, 2012); Sofia Horjales, IP Montevideo (RIIP trainee, 1 month, 2012); Stewart Pine, Harvard University (summer intern, 2 months, 2012); Samin Houshyar, MIT (summer intern, 2 months, 2011); Analia Lima, IP Montevideo (RIIP trainee, 3 months, 2011); Juan-Roman Luque-Ortega, CSIC Madrid (EMBO fellow, 2010); Sylvane Murta, Fiocruz Brazil, (RIIP fellow, 4 months, 2010); Nathalie Joli (summer intern, 1 month, 2010); Najiha Bilal Farooqi (International Fellow, Aga Khan University Medical College, Karachi, Pakistan, 2 months, 2010); Fatma Guerfali, IP Tunis (RIIP trainee, 3 months in 2009); Tahereh Taheri, IP Iran (RIIP trainee, 3 moths, 2008).

 

Transversal Projects

Projects

CV

Year  Degree Field Institution
2006 HDR Parasitology University 5 of Paris, France
1997 PhD Human Genetics  University 7 of Paris, France
1993 BS Biology University Mainz, Germany

Publications

Download