Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Infection and immunity

Hierarchies of host factor dynamics at the entry site of Shigella flexneri during host cell invasion

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Infection and immunity - 23 Apr 2012

Ehsani S, Santos JC, Rodrigues CD, Henriques R, Audry L, Zimmer C, Sansonetti P, Tran Van Nhieu G, Enninga J

Link to Pubmed [PMID] – 22526677

Infect. Immun. 2012 Jul;80(7):2548-57

Shigella flexneri, the causative agent of bacillary dysentery, induces massive cytoskeletal rearrangement, resulting in its entry into nonphagocytic epithelial cells. The bacterium-engulfing membrane ruffles are formed by polymerizing actin, a process activated through injected bacterial effectors that target host small GTPases and tyrosine kinases. Once inside the host cell, S. flexneri escapes from the endocytic vacuole within minutes to move intra- and intercellularly. We quantified the fluorescence signals from fluorescently tagged host factors that are recruited to the site of pathogen entry and vacuolar escape. Quantitative time lapse fluorescence imaging revealed simultaneous recruitment of polymerizing actin, small GTPases of the Rho family, and tyrosine kinases. In contrast, we found that actin surrounding the vacuole containing bacteria dispersed first from the disassembling membranes, whereas other host factors remained colocalized with the membrane remnants. Furthermore, we found that the disassembly of the membrane remnants took place rapidly, within minutes after bacterial release into the cytoplasm. Superresolution visualization of galectin 3 through photoactivated localization microscopy characterized these remnants as small, specular, patchy structures between 30 and 300 nm in diameter. Using our experimental setup to track the time course of infection, we identified the S. flexneri effector IpgB1 as an accelerator of the infection pace, specifically targeting the entry step, but not vacuolar progression or escape. Together, our studies show that bacterial entry into host cells follows precise kinetics and that this time course can be targeted by the pathogen.

http://www.ncbi.nlm.nih.gov/pubmed/22526677