Link to Pubmed [PMID] – 39657785
Link to DOI – 10.1093/nar/gkae1171
Nucleic Acids Res 2024 Dec; ():
The co-evolution of prokaryotes, phages and mobile genetic elements (MGEs) has driven the diversification of defense and anti-defense systems alike. Anti-defense proteins have diverse functional domains, sequences and are typically small, creating a challenge to detect anti-defense homologs across prokaryotic and phage genomes. To date, no tools comprehensively annotate anti-defense proteins within a desired sequence. Here, we developed ‘AntiDefenseFinder’-a free open-source tool and web service that detects 156 anti-defense systems of one or more proteins in any genomic sequence. Using this dataset, we identified 47 981 anti-defense systems distributed across prokaryotes and their viruses. We found that some genes co-localize in ‘anti-defense islands’, including Escherichia coli T4 and Lambda phages, although many appear standalone. Eighty-nine per cent anti-defense systems localize only or preferentially in MGE. However, >80% of anti-Pycsar protein 1 (Apyc1) resides in nonmobile regions of bacterial genomes. Evolutionary analysis and biochemical experiments revealed that Apyc1 likely originated in bacteria to regulate cyclic nucleotide (cNMP) signaling, but phage co-opted Apyc1 to overcome cNMP-utilizing defenses. With the AntiDefenseFinder tool, we hope to facilitate the identification of the full repertoire of anti-defense systems in MGEs, the discovery of new protein functions and a deeper understanding of host-pathogen arms race.