Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© J.M. Ghigo (Institut Pasteur) and Brigite Arbeille (LBC-ME. Faculté de Médecine de Tours)
Colorized scanning electron microscopy of an E. coli biofilm developing on a glass surface
Publication : Antimicrobial Agents and Chemotherapy

In vitro activities of dermaseptins K4S4 and K4K20S4 against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa planktonic growth and biofilm formation.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Antimicrobial Agents and Chemotherapy - 03 Feb 2014

Zaïri A, Ferrières L, Latour-Lambert P, Beloin C, Tangy F, Ghigo JM, Hani K.

Link to Pubmed [PMID] – 24492362

Antimicrob Agents Chemother. 2014;58(4):2221-8

The rising number of infections caused by biofilm formation and the difficulties associated with their treatment by conventional antimicrobial therapies have led to an intensive search for novel antibiofilm agents. Dermaseptins are antimicrobial peptides with a number of attractive properties that might offer alternative therapies against resistant microorganisms. In this study, we synthesized a set of dermaseptin-derived peptides and evaluated their activities against Gram-positive and Gram-negative bacterial biofilm formation. All dermaseptin-derived peptides demonstrated concentration-dependent antibiofilm activities at microgram concentrations, and their activities were dependent on the nature of the peptides, with the highest levels of activity being exhibited by highly charged molecules. Fluorescent binding and confocal microscopy demonstrated that dermaseptin K4S4, a substituted derivative of the native molecule S4, significantly decreased the viability of planktonic and surface-attached bacteria and stopped biofilm formation under dynamic flow conditions. Cytotoxicity assays with HeLa cells showed that some of the tested peptides were less cytotoxic than current antibiotics. Overall, these findings indicate that dermaseptin derivatives might constitute new lead structures for the development of potent antibiofilm agents.

http://www.ncbi.nlm.nih.gov/pubmed/24492362