Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Bioinformatics (Oxford, England) - 07 Apr 2014

Marie-Nelly H, Marbouty M, Cournac A, Liti G, Fischer G, Zimmer C, Koszul R,

Link to Pubmed [PMID] – 24711652

Link to DOI – 10.1093/bioinformatics/btu162

Bioinformatics 2014 Aug; 30(15): 2105-13

De novo sequencing of genomes is followed by annotation analyses aiming at identifying functional genomic features such as genes, non-coding RNAs or regulatory sequences, taking advantage of diverse datasets. These steps sometimes fail at detecting non-coding functional sequences: for example, origins of replication, centromeres and rDNA positions have proven difficult to annotate with high confidence. Here, we demonstrate an unconventional application of Chromosome Conformation Capture (3C) technique, which typically aims at deciphering the average 3D organization of genomes, by showing how functional information about the sequence can be extracted solely from the chromosome contact map.Specifically, we describe a combined experimental and bioinformatic procedure that determines the genomic positions of centromeres and ribosomal DNA clusters in yeasts, including species where classical computational approaches fail. For instance, we determined the centromere positions in Naumovozyma castellii, where these coordinates could not be obtained previously. Although computed centromere positions were characterized by conserved synteny with neighboring species, no consensus sequences could be found, suggesting that centromeric binding proteins or mechanisms have significantly diverged. We also used our approach to refine centromere positions in Kuraishia capsulata and to identify rDNA positions in Debaryomyces hansenii. Our study demonstrates how 3C data can be used to complete the functional annotation of eukaryotic genomes.The source code is provided in the Supplementary Material. This includes a zipped file with the Python code and a contact matrix of Saccharomyces cerevisiae.romain.koszul@pasteur.frSupplementary data are available at Bioinformatics online.