Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Cell reports

Antibiotic perturbation of the human gut phageome preserves its individuality and promotes blooms of virulent phages.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Cell reports - 26 Aug 2025

Pfeifer E, d'Humières C, Lamy-Besnier Q, Oñate FP, Denisé R, Dion S, Condamine B, Touchon M, Ma L, Burdet C, Mentré F, Denamur E, Rocha EPC

Link to Pubmed [PMID] – 40694475

Link to DOI – 10.1016/j.celrep.2025.116020

Cell Rep 2025 Aug; 44(8): 116020

Antibiotic use disrupts the gut microbiota, posing risks of long-term health issues and resistance. To study its impact on gut phages, we followed 22 healthy individuals 2 weeks before and up to 6 months after a 3-day course of 3rd-generation cephalosporins. Our results show that gut phages rarely encode antibiotic resistance genes and are mostly temperate, including many phage plasmids. Furthermore, phage populations remain individual-specific even after microbiome perturbation. Yet, we report a 20% decline in phage diversity the day after treatment, alongside blooms of a few, mostly virulent, phages. We suggest that some of these phages contribute to the recovery of bacterial diversity via “kill-the-winner” dynamics. This is supported by (temporarily) dominant phages targeting Parabacteroides distasonis, a bacterium that thrives post-treatment only in the absence of these phages. Our findings suggest gut phages are crucial to the microbiome response to antibiotics, aiding the restoration of balance and diversity.