Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinician Researcher
  • Department Manager
  • Full Professor
  • Graduate Student
  • Honorary Professor
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinician Researcher
  • Department Manager
  • Full Professor
  • Graduate Student
  • Honorary Professor
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Nature ecology & evolution - 15 Sep 2022

Garcia PS, D'Angelo F, Ollagnier de Choudens S, Dussouchaud M, Bouveret E, Gribaldo S, Barras F,

Link to Pubmed [PMID] – 36109654

Link to DOI – 10.1038/s41559-022-01857-1

Nat Ecol Evol 2022 Sep; ():

Iron-sulfur (Fe-S) clusters are ubiquitous cofactors essential for life. It is largely thought that the emergence of oxygenic photosynthesis and progressive oxygenation of the atmosphere led to the origin of multiprotein machineries (ISC, NIF and SUF) assisting Fe-S cluster synthesis in the presence of oxidative stress and shortage of bioavailable iron. However, previous analyses have left unclear the origin and evolution of these systems. Here, we combine exhaustive homology searches with genomic context analysis and phylogeny to precisely identify Fe-S cluster biogenesis systems in over 10,000 archaeal and bacterial genomes. We highlight the existence of two additional and clearly distinct ‘minimal’ Fe-S cluster assembly machineries, MIS (minimal iron-sulfur) and SMS (SUF-like minimal system), which we infer in the last universal common ancestor (LUCA) and we experimentally validate SMS as a bona fide Fe-S cluster biogenesis system. These ancestral systems were kept in archaea whereas they went through stepwise complexification in bacteria to incorporate additional functions for higher Fe-S cluster synthesis efficiency leading to SUF, ISC and NIF. Horizontal gene transfers and losses then shaped the current distribution of these systems, driving ecological adaptations such as the emergence of aerobic lifestyles in archaea. Our results show that dedicated machineries were in place early in evolution to assist Fe-S cluster biogenesis and that their origin is not directly linked to Earth oxygenation.

https://pubmed.ncbi.nlm.nih.gov/36109654