Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Molecular microbiology

A study of the DNA damage checkpoint in Candida albicans: uncoupling of the functions of Rad53 in DNA repair, cell cycle regulation and genotoxic stress-induced polarized growth

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular microbiology - 25 Dec 2013

Loll-Krippleber R, d'Enfert C, Feri A, Diogo D, Perin A, Marcet-Houben M, Bougnoux ME, Legrand M

Link to Pubmed [PMID] – 24286230

Mol. Microbiol. 2014 Feb;91(3):452-71

In response to genotoxic stress (GS), Candida albicans can undergo polarized growth and massive genome rearrangements including loss-of-heterozygosity (LOH) events. We evaluated the contribution of the CaRad53p and CaDun1p kinases of the DNA damage checkpoint (DDCP) in these processes. Characterization of C. albicans rad53ΔΔ and dun1ΔΔ mutants revealed that the two kinases were involved in the maintenance of heterozygosity. SNP-RFLP typing and whole-genome sequencing of rad53ΔΔ isolates having undergone a LOH revealed that, according to the chromosome on which LOH had occurred, these were predominantly due to break-induced replication/mitotic cross-over or chromosome loss. Loss of CaRAD53 also resulted in frequent aneuploidies. Deletion of CaDUN1 led to an increase in recombination-dependent LOH but did not trigger aneuploidies. It also increased GS sensitivity but did not impair GS-induced polarized growth contrary to CaRAD53 deletion. Characterization of CaRad53p site-directed mutants demonstrated that its kinase activity and N-terminal phosphorylation sites were crucial for its function in the resistance to GS, maintenance of heterozygosity, cell cycle regulation and polarized growth. Moreover, using phosphomimic mutants, we revealed an uncoupling of the functions of CaRad53p in these different processes, thus providing a novel understanding of how the DDCP may regulate downstream events in response to GS.