Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : European journal of immunology

A novel Flt3-deficient HIS mouse model with selective enhancement of human DC development

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in European journal of immunology - 01 Mar 2016

Li Y, Mention JJ, Court N, Masse-Ranson G, Toubert A, Spits H, Legrand N, Corcuff E, Strick-Marchand H, Di Santo JP

Link to Pubmed [PMID] – 26865269

Eur. J. Immunol. 2016 May;46(5):1291-9

Humanized mice harboring human immune systems (HIS) represent a platform to study immune responses against pathogens and to screen vaccine candidates and novel immunotherapeutics. Innate and adaptive immune responses are suboptimal in HIS mice, possibly due to poor reconstitution of human antigen-presenting cells, including dendritic cells (DCs). DC homeostasis is regulated by cytokine availability, and Flt3-ligand (Flt3L) is one factor that conditions this process. Mouse myelopoiesis is essentially normal in most current HIS models. As such, developing mouse myeloid cells may limit human DC reconstitution by reducing available Flt3L and by cellular competition for specific “niches.” To address these issues, we created a novel HIS model that compromises host myeloid cell development via deficiency in the receptor tyrosine kinase Flk2/Flt3. In Balb/c Rag2(-/-) Il2rg(-/-) Flt3(-/-) (BRGF) recipients, human conventional DCs and plasmacytoid DCs develop from hCD34(+) precursors and can be specifically boosted with exogenous Flt3L. Human DCs that develop in this context normally respond to TLR stimulation, and improved human DC homeostasis is associated with increased numbers of human NK and T cells. This new HIS-DC model should provide a means to dissect human DC differentiation and represents a novel platform to screen immune adjuvants and DC targeting therapies.

http://www.ncbi.nlm.nih.gov/pubmed/26865269