Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Uwe Maskos
Tranche d'hippocampe de souris colorée avec deux toxines spécifiques de sous-types de récepteur nicotinique, en rouge (grains), et en vert (corps cellulaires). L'hippocampe est la zone du cerveau qui gère la mémoire spatiale.
Project

Role of the nicotinic receptor in Alzheimer’s disease pathology

Starting Date
01
Oct 2012
Ending Date
01
Oct 2017
Status
Ongoing
Members
1
Structures
1

About

There is experimental and biomedical evidence that the nicotinic acetylcholine receptor (nAChR) is implicated in Alzheimer’s Disease (AD) pathology. The only reasonably efficient FDA approved treatment for early stage AD, blockers of acetylcholine esterase (AChE), enhances cholinergic tone in the brain, and thus signalling through the nAChRs and muscarinic AChRs. Nicotine is already in clinical trials for mild cognitive impairment (MCI). In universally accepted animal models of AD, short term treatment with nicotine, the selective agonist for the nAChRs, reduces the plaque load by 80%. We are crossing these AD models with our different KO strains for nAChR subunits to establish the receptor subtype underlying this clearance. At the same time, it has also been shown that neuronal activity in the vicinity of the plaques is abnormal, and thus very likely a contributing factor to cognitive impairment. Our work addresses the question of how nicotinic treatment reverses the effect of amyloid-beta load in transgenic mice, and potentially normalises neuronal activity in cortex and hippocampus, two main targets of the pathology. We are examining the AD deficits and amelioration by nicotine from the single cell to behaviour level. We are using in vivo two photon imaging of layer 2/3 cortical pyramidal and inhibitory neurons as an assay for circuit dysfunction with and without nicotinic signaling in animal models of AD. In the hippocampus, we are applying novel fibre-optic imaging technology developed in the laboratory to study signaling, in vivo, in this key area, out of reach for standard two photon technology. The nicotine treated mice are tested in standard behavioural paradigms to measure cognitive improvements. Nicotine treatment will be compared with FDA approved drugs. The demonstration that these could be beneficial in animal models of AD would open the way towards an understanding of the mechanism of its action, and potential clinical trials with already approved compounds.

 

 

 

VIP-boucle