Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Ce graphique présente, pour chaque date d'observation depuis 2018, le taux d'accès ouvert des publications scientifiques de l'Institut Pasteur, avec un DOI Crossref, parues durant l'année précédente.
Publication :

Towards the enzymatic formation of artificial metal base pairs with a carboxy-imidazole-modified nucleotide

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in - 02 Feb 2019

Pascal Röthlisberger, Fabienne Levi-Acobas, Ivo Sarac, Philippe Marlière, Piet Herdewijn, Marcel Hollenstein*

J. Inorg. Biochem. 2019, 191, 154-163

The identification of synthetic nucleotides that sustain the formation of orthogonal, unnatural base pairs is an important goal in synthetic biology. Such artificial synthons have been used for the generation of semi-synthetic organisms as well as functional nucleic acids with enhanced binding properties. The enzymatic formation of artificial metal-base pairs is a vastly underexplored and alluring alternative to existing systems. Here, we report the synthesis and biochemical characterization of 1‑(2-deoxy‑β‑d‑ribofuranosyl) imidazole‑4‑carboxylate nucleoside triphosphate (dImCTP) which is equipped with a carboxylic acid moiety on the imidazole moiety in order to increase the coordination environment to [2 + 2] and [2 + 1]. A clear metal dependence was observed for the single incorporation of the modified nucleotide into DNA by the DNA polymerase from Thermus aquaticus (Taq). The presence of AgI in primer extension reactions conducted with combinations of 1‑(2‑deoxy‑β‑d‑ribofuranosyl) imidazole nucleoside triphosphate (dImTP) and dImCTP supported the unusual [2 + 1] coordination pattern. The efficiency of the tailing reactions mediated by the terminal deoxynucleotidyl transferase (TdT) was markedly improved when using dImCTP instead of dImTP. Even though products with multiple modified nucleotides were not observed, the appendage of additional metal binding ligands on the imidazole nucleobase appears to be a valid approach to improve the biochemical properties of modified triphosphates in the context of an expansion of the genetic alphabet with metal base pairs.