Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© J.M. Ghigo (Institut Pasteur) and Brigite Arbeille (LBC-ME. Faculté de Médecine de Tours)
Colorized scanning electron microscopy of an E. coli biofilm developing on a glass surface
Publication : Environmental Microbiology

The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Environmental Microbiology - 01 Mar 2008

Balestrino D, Ghigo JM, Charbonnel N, Haagensen JA, Forestier C.

Link to Pubmed [PMID] – 18237304

Environ Microbiol. 2008 Mar;10(3):685-701

The ability to form biofilm is seen as an increasingly important colonization strategy among both pathogenic and environmental Klebsiella pneumoniae strains. The aim of the present study was to identify abiotic surface colonization factors of K. pneumoniae using different models at different phases of biofilm development. A 2200 K. pneumoniae mutant library previously obtained by signature-tagged mutagenesis was screened in static and dynamic culture models to detect clones impaired at early and/or mature stages of biofilm formation. A total of 28 mutants were affected during late phases of biofilm formation, whereas 16 mutants displayed early adhesion defect. These mutants corresponded to genes involved in potential cellular and DNA metabolism pathways and to membrane transport functions. Eight mutants were deficient in capsule or LPS production. Gene disruption and microscopic analyses showed that LPS is involved in initial adhesion on both glass and polyvinyl-chloride and the capsule required for the appropriate initial coverage of substratum and the construction of mature biofilm architecture. These results give new insight into the bacterial factors sequentially associated with the ability to colonize an abiotic surface and reveal the dual roles played by surface exopolysaccharides during K. pneumoniae biofilm formation.