Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Pierre Gounon
Entrée de Listeria dans une cellule épithéliale (Grossissement X 10000). Image colorisée.
Publication : Molecular microbiology

Synergy between the N- and C-terminal domains of InlB for efficient invasion of non-phagocytic cells by Listeria monocytogenes

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular microbiology - 01 Nov 2001

Jonquières R, Pizarro-Cerdá J, Cossart P

Link to Pubmed [PMID] – 11737639

Mol. Microbiol. 2001 Nov;42(4):955-65

InlB is a Listeria monocytogenes protein promoting entry in non-phagocytic cells, and has been shown recently to activate the hepatocyte growth factor receptor (HGFR or Met). The N-terminal domain of InlB (LRRs) binds and activates Met, whereas the C-terminal domain of InlB (GW modules) mediates loose attachment of InlB to the listerial surface. As HGF activation of Met is tightly controlled by glycosaminoglycans (GAGs), we tested if GAGs also modulate the Met-InlB interactions. We show that InlB-dependent invasion of non-phagocytic cells decreases up to 10 times in the absence of GAGs, and that soluble heparin releases InlB from the bacterial surface and promotes its clustering. Furthermore, we demonstrate that InlB binds cellular GAGs by its GW modules, and that this interaction is required for efficient InlB-mediated invasion. Therefore, GW modules have an unsuspected dual function: they attach InlB to the bacterial surface and enhance entry triggered by the LRRs domain. Our results thus provide the first evidence for a synergy between two host factor-binding domains of a bacterial invasion protein, and reinforce similarities between InlB and mammalian growth factors.