Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Ahmed Haouz
Cristaux d'une protéine de Mycobacterium tuberculosis produits dans le cadre du Grand Programme Horizontal sur la Tuberculose à l'Institut Pasteur. La caractérisation structurale de protéines mycobactériennes aide à une meilleure compréhension de la physiologie et de la pathogénicité des mycobactéries et fournit un point de départ pour la conception de nouveaux agents antibactériens.
Publication : FEBS letters

Structural snapshots along the reaction mechanism of the atypical poplar thioredoxin-like2.1

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in FEBS letters - 17 Feb 2018

Chibani K, Saul F, Didierjean C, Rouhier N, Haouz A

Link to Pubmed [PMID] – 29453875

FEBS Lett. 2018 Feb;

Plastidial thioredoxin (TRX)-like2.1 proteins are atypical thioredoxins possessing a WCRKC active site signature and using glutathione for recycling. To obtain structural information supporting the peculiar catalytic mechanisms and target proteins of these TRXs, we solved the crystal structures of poplar TRX-like2.1 in oxidized and reduced states and of mutated variants. These structures share similar folding with TRXs exhibiting the canonical WCGPC signature. Moreover, the overall conformation is not altered by reduction of the catalytic disulfide bond or in a C45S/C67S variant that formed a disulfide-bridged dimer possibly mimicking reaction intermediates with target proteins. Modeling of the interaction of TRX-like2.1 with both NADPH- and ferredoxin-thioredoxin reductases (FTR) indicates that the presence of Arg43 and Lys44 residues likely precludes reduction by the plastidial FTR.