Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : BioRxiv

Stealth fluorescence labeling for live microscopy imaging of mRNA delivery

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in BioRxiv - 01 Jul 2020

Tom Baladi, Jesper R. Nilsson, Audrey Gallud, Emanuele Celauro, Cécile Gasse, Fabienne Levi-Acobas, Ivo Sarac, Marcel Hollenstein, Anders Dahlen, Elin K. Esbjörner, Marcus Wilhelmsson*

BioxRiv, 2020, 172767 (doi: 10.1101/2020.07.01.172767)

Methods for tracking of RNA molecules inside living cells are critical to probe their dynamics and biological functions, but also to monitor delivery of therapeutic RNA. We here describe a method for fluorescence labeling of RNAs of any length, via the enzymatic incorporation of the minimally perturbing and intrinsically fluorescent tricyclic cytosine analogue tCO. Using this approach, we demonstrate incorporation of tCO in up to 100% of all natural cytosine positions of a 1.2 kb mRNA encoding for the histone H2B fused to GFP (H2B:GFP). The resulting transcript is fully compatible with both in vitro transcription and subsequent in cell translation. Spectroscopic characterization of the in vitro transcribed mRNA, shows that the incorporation rate of tCO is on par with cytosine, facilitating efficient labeling and controlled tuning of labeling ratios for different applications. Using live cell confocal microscopy and flow cytometry, we show that the tCO-labeled mRNA is efficiently and correctly translated into H2B:GFP upon electroporation as well as lipid-mediated transfection of human Huh-7 cells; correct translation was further confirmed in cell-free systems. Importantly, the spectral properties of the tCO-modified transcripts and their translation product, in this case H2B:GFP, allow for their straightforward and simultaneous visualization in live cells.

https://www.biorxiv.org/content/10.1101/2020.07.01.172767v1