Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Pierre Gounon
Entrée de Listeria dans une cellule épithéliale (Grossissement X 10000). Image colorisée.
Publication : FASEB journal : official publication of the Federation of American Societies for Experimental Biology

Salmonella enteritidis Rck-mediated invasion requires activation of Rac1, which is dependent on the class I PI 3-kinases-Akt signaling pathway

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in FASEB journal : official publication of the Federation of American Societies for Experimental Biology - 30 Dec 2011

Mijouin L, Rosselin M, Bottreau E, Pizarro-Cerda J, Cossart P, Velge P, Wiedemann A

Link to Pubmed [PMID] – 22210834

FASEB J. 2012 Apr;26(4):1569-81

The Salmonella outer membrane protein Rck mediates a Zipper-like entry mechanism controlled by Rac, the Arp2/3 complex, and actin polymerization. However, little is known about the early steps leading to Rac activation and Rck-mediated internalization. The use of pharmacological inhibitors or PI 3-kinase dominant-negative mutant induced more than 80% less invasion without affecting attachment. Moreover, Rck-mediated internalization caused an increase in the association of p85 with at least one tyrosine-phosphorylated protein, indicating that class I PI 3-kinase activity was stimulated. We also report that this PI 3-kinase activity is essential for Rac1 activation. However, Rac recruitment at the Rck-mediated entry site was independent of its activation. Using a pharmacological approach or Akt-knockout cells, we also demonstrated that Akt was phosphorylated in response to Rck-mediated internalization as demonstrated by immunoblotting analysis and that all three Akt isoforms were required during this process. Overall, our results describe a signaling pathway involving tyrosine phosphorylation, class I PI 3-kinase, Akt activation, and Rac activation, leading to Rck-dependent Zipper entry. The specificity of this signaling pathway with regard to that of the type 3 secretion system, which is the other invasion process of Salmonella, is discussed.

http://www.ncbi.nlm.nih.gov/pubmed/22210834