Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Blood

Ontogeny, function, and peripheral homeostasis of regulatory T cells in the absence of interleukin-7

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Blood - 08 Jun 2006

Peffault de Latour R, Dujardin HC, Mishellany F, Burlen-Defranoux O, Zuber J, Marques R, Di Santo J, Cumano A, Vieira P, Bandeira A

Link to Pubmed [PMID] – 16763207

Blood 2006 Oct;108(7):2300-6

Mice lacking interleukin-7 (IL-7-/- mice) have no signs of autoimmune disease, contrary to other models of lymphopenia. We investigated whether the absence of disease was due to the fact that IL-7 is dispensable for the ontogeny, function, and homeostasis of regulatory CD4+ T cells. We show here that the establishment of the peripheral pool of Foxp3-expressing regulatory cells is IL-7 independent, and the premature involution of the thymus in IL-7-/- mice does not change the representation of the CD4+CD25+ T-cell compartment. In addition, CD4+CD25+ T cells expand in the absence of IL-7, without losing Foxp3 expression. The frequency of activated peripheral CD4+ T cells increases with age in both the CD25- and CD25+ compartments, with the CD4+CD25+ T cells displaying signs of constant activation. IL-7-/- CD4+CD25+ T cells control inflammatory bowel disease induced by IL-7-/- T cells even in hosts lacking IL-7. Depletion of the CD25+ T-cell subset after thymic involution results in a mild form of inflammatory bowel disease (IBD), which resolves concomitantly with the regeneration of this subset. This study shows for the first time that IL-7-/- mice have a robust regulatory Foxp3-expressing CD4+ T-cell compartment that controls T-cell-mediated disease. It also highlights the potential of the regulatory Foxp3-expressing CD4+CD25- T-cell population to restore a functional CD4+CD25+ T-cell compartment through an IL-7-independent pathway.