Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Uwe Maskos
Tranche d'hippocampe de souris colorée avec deux toxines spécifiques de sous-types de récepteur nicotinique, en rouge (grains), et en vert (corps cellulaires). L'hippocampe est la zone du cerveau qui gère la mémoire spatiale.
Publication : Developmental biology

Long-term development of human iPSC-derived pyramidal neurons quantified after transplantation into the neonatal mouse cortex.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Developmental biology - 01 May 2020

D'Alessio R, Koukouli F, Blanchard S, Catteau J, Raïs C, Lemonnier T, Féraud O, Bennaceur-Griscelli A, Groszer M, Maskos U,

Link to Pubmed [PMID] – 31982375

Link to DOI – S0012-1606(19)30362-810.1016/j.ydbio.2020.01.009

Dev Biol 2020 05; 461(1): 86-95

One of the main obstacles for studying the molecular and cellular mechanisms underlying human neurodevelopment in vivo is the scarcity of experimental models. The discovery that neurons can be generated from human induced pluripotent stem cells (hiPSCs) paves the way for novel approaches that are stem cell-based. Here, we developed a technique to follow the development of transplanted hiPSC-derived neuronal precursors in the cortex of mice over time. Using post-mortem immunohistochemistry we quantified the differentiation and maturation of dendritic patterns of the human neurons over a total of six months. In addition, entirely hiPSC-derived neuronal parenchyma was followed over eight months using two-photon in vivo imaging through a cranial window. We found that transplanted hiPSC-derived neuronal precursors exhibit a “protracted” human developmental programme in different cortical areas. This offers novel possibilities for the sequential in vivo study of human cortical development and its alteration, followed in “real time”.