Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Nucleic acids research

Imogene: identification of motifs and cis-regulatory modules underlying gene co-regulation

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Nucleic acids research - 25 Mar 2014

Rouault H, Santolini M, Schweisguth F, Hakim V

Link to Pubmed [PMID] – 24682824

Nucleic Acids Res. 2014 Jun;42(10):6128-45

Cis-regulatory modules (CRMs) and motifs play a central role in tissue and condition-specific gene expression. Here we present Imogene, an ensemble of statistical tools that we have developed to facilitate their identification and implemented in a publicly available software. Starting from a small training set of mammalian or fly CRMs that drive similar gene expression profiles, Imogene determines de novo cis-regulatory motifs that underlie this co-expression. It can then predict on a genome-wide scale other CRMs with a regulatory potential similar to the training set. Imogene bypasses the need of large datasets for statistical analyses by making central use of the information provided by the sequenced genomes of multiple species, based on the developed statistical tools and explicit models for transcription factor binding site evolution. We test Imogene on characterized tissue-specific mouse developmental CRMs. Its ability to identify CRMs with the same specificity based on its de novo created motifs is comparable to that of previously evaluated ‘motif-blind’ methods. We further show, both in flies and in mammals, that Imogene de novo generated motifs are sufficient to discriminate CRMs related to different developmental programs. Notably, purely relying on sequence data, Imogene performs as well in this discrimination task as a previously reported learning algorithm based on Chromatin Immunoprecipitation (ChIP) data for multiple transcription factors at multiple developmental stages.