Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : IUBMB life

Heterotachy and functional shift in protein evolution.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in IUBMB life - 01 Jan 2003

Philippe H, Casane D, Gribaldo S, Lopez P, Meunier J,

Link to Pubmed [PMID] – 12880207

IUBMB Life 2003 ; 55(4-5): 257-65

Study of structure/function relationships constitutes an important field of research, especially for modification of protein function and drug design. However, the fact that rational design (i.e. the modification of amino acid sequences by means of directed mutagenesis, based on knowledge of the three-dimensional structure) appears to be much less efficient than irrational design (i.e. random mutagenesis followed by in vitro selection) clearly indicates that we understand little about the relationships between primary sequence, three-dimensional structure and function. The use of evolutionary approaches and concepts will bring insights to this difficult question. The increasing availability of multigene family sequences that has resulted from genome projects has inspired the creation of novel in silico evolutionary methods to predict details of protein function in duplicated (paralogous) proteins. The underlying principle of all such approaches is to compare the evolutionary properties of homologous sequence positions in paralogs. It has been proposed that the positions that show switches in substitution rate over time–i.e., ‘heterotachous sites’–are good indicators of functional divergence. However, it appears that heterotachy is a much more general process, since most variable sites of homologous proteins with no evidence of functional shift are heterotachous. Similarly, it appears that switches in substitution rate are as frequent when paralogous sequences are compared as when orthologous sequences are compared. Heterotachy, instead of being indicative of functional shift, may more generally reflect a less specific process related to the many intra- and inter-molecular interactions compatible with a range of more or less equally viable protein conformations. These interactions will lead to different constraints on the nature of the primary sequences, consistently with theories suggesting the non-independence of substitutions in proteins. However, a specific type of amino acid variation might constitute a good indicator of functional divergence: substitutions occurring at positions that are generally slowly evolving. Such substitutions at constrained sites are indeed much more frequent soon after gene duplication. The identification and analysis of these sites by complementing structural information with evolutionary data may represent a promising direction to future studies dealing with the functional characterization of an ever increasing number of multi-gene families identified by complete genome analysis.