Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : ISME Journal

Genetic and life-history traits associated with the distribution of prophages in bacteria.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in ISME Journal - 25 Mar 2016

Touchon M, Bernheim A, Rocha EPC

Link to Pubmed [PMID] – 27015004

ISME J. 2016 Mar 25. doi: 10.1038/ismej.2016.47.

Nearly half of the sequenced bacteria are lysogens and many of their prophages encode adaptive traits. Yet, the variables driving prophage distribution remain undetermined. We identified 2246 prophages in complete bacterial genomes to study the genetic and life-history traits associated with lysogeny. While optimal growth temperatures and average cell volumes were not associated with lysogeny, prophages were more frequent in pathogens and in bacteria with small minimal doubling times. Their frequency also increased with genome size, but only for genomes smaller than 6 Mb. The number of spacers in CRISPR-Cas systems and the frequency of type III systems were anticorrelated with prophage frequency, but lysogens were more likely to encode type I and type II systems. The minimal doubling time was the trait most correlated with lysogeny, followed by genome size and pathogenicity. We propose that bacteria with highly variable growth rates often encounter lower opportunity costs for lysogeny relative to lysis. These results contribute to explain the paucity of temperate phages in certain bacterial clades and of bacterial lysogens in certain environments. They suggest that genetic and life-history traits affect the contributions of temperate phages to bacterial genomes.