Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Michel-Robert Popoff
Clostridium difficile en microscopie à contraste de phase. On distingue des bactéries sporulées, non sporulées et d'autres en cours de lyse (destruction). Bactérie de l'environnement (sol, eau, foin, sable), elle est à l'origine d'infections nosocomiales survenant après un traitement antibiotique : Clostridium difficile prédomine alors que les autres bactéries de la flore intestinale ont été détruites. L'infection peut provoquer deux types de pathologies graves : les colites pseudo-membraneuses dont l'origine est quasiment due à 100 % à C. difficile et la diarrhée post-antibiothérapie due à C. difficile dans 30 % des cas de ces diarrhées.
Publication : Research in microbiology

Cpe1786/IscR of Clostridium perfringens represses expression of genes involved in Fe-S cluster biogenesis

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Research in microbiology - 26 Mar 2016

André G, Haudecoeur E, Courtois E, Monot M, Dupuy B, Rodionov DA, Martin-Verstraete I

Link to Pubmed [PMID] – 27020244

Res. Microbiol. 2016 Mar;

Cpe1786 of Clostridium perfringens is an Rrf2-type regulator containing the three-cysteine residues coordinating a Fe-S in IscR, the repressor controlling Fe-S homeostasis in enterobacteria. The cpe1786 gene formed an operon with iscSU involved in Fe-S biogenesis and tmrU. This operon was transcribed from a σ(A)-dependent promoter. We showed that in the heterologous host Bacillus subtilis, Cpe1786, renamed IscRCp, negatively controlled its own transcription. We constructed an iscR mutant in C. perfringens. We then compared the expression profile of strain 13 and of the iscR mutant. IscRCp controlled expression of genes involved in Fe-S biogenesis, in amino acid or sugar metabolisms, in fermentation pathways and in host compound utilization. We then demonstrated, using a ChIP-PCR experiment, that IscRCp interacted with its promoter region in vivo in C. perfringens and with the promoter of cpe2093 encoding an amino acid ABC transporter. We utilized a comparative genomic approach to infer a candidate IscR binding motif and reconstruct IscR regulons in clostridia. We showed that point mutations in the conserved motif of 29 bp identified upstream of iscR decreased the cysteine-dependent repression of iscR mediated by IscRCp.

http://www.ncbi.nlm.nih.gov/pubmed/27020244