Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Pierre Gounon
Entrée de Listeria dans une cellule épithéliale (Grossissement X 10000). Image colorisée.
Publication : Tubercle and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease

Extra and intracellular expression of Mycobacterium tuberculosis genes

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Tubercle and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease - 01 Jan 1998

Smith I, Dussurget O, Rodriguez GM, Timm J, Gomez M, Dubnau J, Gold B, Manganelli R

Link to Pubmed [PMID] – 10645446

Tuber. Lung Dis. 1998;79(2):91-7

To understand how Mycobacterium tuberculosis survives and grows in an infected host, we are studying the mycobacterial transcriptional machinery and its response to stresses encountered in vitro and in vivo. Much has been learned about sigma factors and other transcriptional regulators concerning their roles in controlling mycobacterial gene expression. It has recently been shown that sigma A is the essential housekeeping sigma factor and the alternative sigma factor sigma B, not essential for growth in a laboratory setting, is required for a robust protective response to various environmental stresses. We are also studying the mechanism by which the R522H mutation in sigma A prevents the transcription of certain genes, including some that are believed necessary for virulence. Also under investigation is the mycobacterial iron acquisition apparatus and its regulation, as metabolism of this essential element plays a key role in microbial pathogenesis. We have identified and characterized the major mycobacterial iron regulator IdeR that blocks the synthesis of the iron uptake machinery and have identified target genes in M. smegmatis and M. tuberculosis that are directly repressed by IdeR. Recent studies have examined the control of M. tuberculosis gene expression in vivo. Among these new approaches are an in vivo expression technology system to identify M. tuberculosis genes that are induced in macrophages and mice and a novel RT-PCR method that allows an accurate comparison between the levels of specific mRNAs in M. tuberculosis grown in vitro with those found in bacteria growing in human macrophages.

http://www.ncbi.nlm.nih.gov/pubmed/10645446