Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Christelle Durand
Microscopie d'un neurone. Le marquage jaune montre les synapses.
Publication : Cortex; a journal devoted to the study of the nervous system and behavior

Evolution of neocortical folding: A phylogenetic comparative analysis of MRI from 34 primate species.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Cortex; a journal devoted to the study of the nervous system and behavior - 01 Sep 2019

Heuer K, Gulban OF, Bazin PL, Osoianu A, Valabregue R, Santin M, Herbin M, Toro R,

Link to Pubmed [PMID] – 31235272

Link to DOI – 10.1016/j.cortex.2019.04.011S0010-9452(19)30170-4

Cortex 2019 Sep; 118(): 275-291

We conducted a comparative analysis of primate cerebral size and neocortical folding using magnetic resonance imaging data from 65 individuals belonging to 34 different species. We measured several neocortical folding parameters and studied their evolution using phylogenetic comparative methods. Our results suggest that the most likely model for neuroanatomical evolution is one where differences appear randomly (the Brownian Motion model), however, alternative models cannot be completely ruled out. We present estimations of the ancestral primate phenotypes as well as estimations of the rates of phenotypic change. Based on the Brownian Motion model, the common ancestor of primates may have had a folded cerebrum similar to that of a small lemur such as the aye-aye. Finally, we observed a non-linear relationship between fold wavelength and fold depth with cerebral volume. In particular, gyrencephalic primate neocortices across different groups exhibited a strikingly stable fold wavelength of about 12 mm (±20%), despite a 20-fold variation in cerebral volume. We discuss our results in the context of current theories of neocortical folding.