Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Melanie Blokesch, EPFL
Flagellated Vibrio cholerae
Publication : Nature Biotechnology

Engineered toxin-intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed populations

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Nature Biotechnology - 20 Jan 2019

Lopez-Igual R., Bernal-Bayard J., Rodriguez-Paton A., Ghigo J.-M., and Mazel D.

Link to Pubmed [PMID] – 30988505

Nat Biotechnol. 2019 Jul;37(7):755-760. doi: 10.1038/s41587-019-0105-3. Epub 2019 Apr 15.

Targeted killing of pathogenic bacteria without harming beneficial members of host microbiota holds promise as a strategy to cure disease and limit both antimicrobial-related dysbiosis and development of antimicrobial resistance. We engineer toxins that are split by inteins and deliver them by conjugation into a mixed population of bacteria. Our toxin-intein antimicrobial is only activated in bacteria that harbor specific transcription factors. We apply our antimicrobial to specifically target and kill antibiotic-resistant Vibrio cholerae present in mixed populations. We find that 100% of antibiotic-resistant V. cholerae receiving the plasmid are killed. Escape mutants were extremely rare (10-6-10-8). We show that conjugation and specific killing of targeted bacteria occurs in the microbiota of zebrafish and crustacean larvae, which are natural hosts for Vibrio spp. Toxins split with inteins could form the basis of precision antimicrobials to target pathogens that are antibiotic resistant.