Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© J.M. Ghigo (Institut Pasteur) and Brigite Arbeille (LBC-ME. Faculté de Médecine de Tours)
Colorized scanning electron microscopy of an E. coli biofilm developing on a glass surface
Publication : Environmental Chemistry

Electrophoresis as a simple method to detect deleterious actions of engineered nanoparticles on living cells

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Environmental Chemistry - 19 Sep 2019

E. Vouriot, I. Bihannic, A. Beaussart, Y. Waldvogel, A. Razafitianamaharavo, T. Ribeiro, J.P. Farinha, C. Beloin, and J.F.L. Duval

Link to DOI [DOI] – 10.1071/EN19190

Environmental Chemistry 17(1) 39-53 https://doi.org/10.1071/EN19190

The release of engineered nanoparticles (NPs) to the environment may have profound implications for the health of aquatic biota. In this study, we show that the initial stage of the action of NPs on bacteria can be detected by the measurement of the electrophoretic fingerprints of mixed NP–cell dispersions. Such electrokinetic signatures reflect a modification of the physicochemical surface properties of both cells and NPs following changes in the organisation of the cell envelope, subsequent release of intracellular material and/or excretion of biomolecules. The demonstration is based on a thorough investigation of the electrohydrodynamic features of genetically engineered Escherichia coli bacteria with distinct surface phenotypes (presence of adhesive YeeJ large proteins or F-pili proteinaceous filaments) exposed to silica NPs (radius of 65 nm) functionalised by -NH2 terminal groups. At pH 7, electrostatics prevents interactions between bacteria and SiNH2 NPs, regardless of the considered concentration of NPs (range of 0–10−2 g L−1). At pH 3, electrostatically-driven interactions allow intimate contacts between NPs and bacteria. In turn, significant modulation of the electrophoretic determinants of cells and NPs are generated owing to the alteration of the cell envelope and acquisition of bio-corona by NPs. Differentiated roles of the cell surface appendages in the mediation of NP impacts are evidenced by the measured dependence of the electropherograms on cell surface phenotype and NP concentration. Cell morphology and surface roughness, evaluated by atomic force microscopy (AFM) in liquid, confirm the conditions of pH and concentration of NPs where NP–cell interactions are operational. The combination of electrokinetics and AFM further pinpoints heterogeneities in the cell response at the single cell and population scales. Altogether, the results show that electrophoresis is suitable to detect the preliminary stage of events leading to the toxicity of NPs towards microorganisms.

https://www.publish.csiro.au/EN/EN19190