Link to Pubmed [PMID] – 34878112
Link to DOI – 10.1242/jcs.259119
J Cell Sci 2021 Dec; ():
Metabolic studies and animal knockout models point to the critical role of polyunsaturated docosahexaenoic acid (22:6, DHA)-containing phospholipids (PLs) in physiology. Here, we investigated the impact of DHA-PLs on the dynamics of transendothelial cell macroapertures (TEMs) triggered by RhoA inhibition-associated cell spreading. Lipidomic analyses show that human umbilical vein endothelial cells (HUVECs) subjected to DHA-diet undergo a 6-fold enrichment in DHA-PLs at plasma membrane (PM) at the expense of monounsaturated OA-PLs. Consequently, DHA-PLs enrichment at the PM induces a reduction of cell thickness and shifts cellular membranes towards a permissive mode of membrane fusion for transcellular tunnel initiation. We provide evidence that a global homeostatic control of membrane tension and cell cortex rigidity minimizes overall changes of TEM area through a decrease of TEM size and lifetime. Conversely, low DHA-PL levels at the PM leads to the opening of unstable and wider TEMs. Together, this provides evidence that variations of DHA-PLs levels in membranes affect cell biomechanical properties.