Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Structural Dynamics Of Macromolecules
The structure of a bacterial analog of the nicotinic receptor (one color per subunit) inserted into the cell membrane (grey and orange). A representation of the volume accessible to ions is shown in yellow.
Publication : Nucleic acids research

Conferring a template-dependent polymerase activity to terminal deoxynucleotidyltransferase by mutations in the Loop1 region

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Nucleic acids research - 05 Jun 2009

Romain F, Barbosa I, Gouge J, Rougeon F, Delarue M

Link to Pubmed [PMID] – 19502493

Link to HAL – Click here

Link to DOI – 10.1093/nar/gkp460

Nucleic Acids Res. 2009 Aug;37(14):4642-56

Terminal deoxynucleotidyltransferase (Tdt) and DNA polymerase mu (pol mu) are two eukaryotic highly similar proteins involved in DNA processing and repair. Despite their high sequence identity, they differ widely in their activity: pol mu has a templated polymerase activity, whereas Tdt has a non-templated one. Loop1, first described when the Tdt structure was solved, has been invoked as the major structural determinant of this difference. Here we describe attempts to transform Tdt into pol mu with the minimal number of mutations in and around Loop1. First we describe the effect of mutations on six different positions chosen to destabilize Tdt Loop1 structure, either by alanine substitution or by deletion; they result at most in a reduction of Tdt activity, but adding Co(++) restores most of this Tdt activity. However, a deletion of the entire Loop1 as in pol lambda does confer a limited template-dependent polymerase behavior to Tdt while a chimera bearing an extended pol mu Loop1 reproduces pol mu behavior. Finally, 16 additional substitutions are reported, targeted at the two so-called ‘sequence determinant’ regions located just after Loop1 or underneath. Among them, the single-point mutant F401A displays a sequence-specific replicative polymerase phenotype that is stable upon Co(++) addition. These results are discussed in light of the available crystal structures.