Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : The Journal of antimicrobial chemotherapy

Bacteriophage LM33_P1, a fast-acting weapon against the pandemic ST131-O25b:H4 Escherichia coli clonal complex

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of antimicrobial chemotherapy - 07 Jul 2016

Dufour N, Clermont O, La Combe B, Messika J, Dion S, Khanna V, Denamur E, Ricard JD, Debarbieux L,

Link to Pubmed [PMID] – 27387322

J. Antimicrob. Chemother. 2016 Jul;

OBJECTIVES: Amongst the highly diverse Escherichia coli population, the ST131-O25b:H4 clonal complex is particularly worrisome as it is associated with a high level of antibiotic resistance. The lack of new antibiotics, the worldwide continuous increase of infections caused by MDR bacteria and the need for narrow-spectrum antimicrobial agents have revived interest in phage therapy. In this article, we describe a virulent bacteriophage, LM33_P1, which specifically infects O25b strains, and provide data related to its therapeutic potential.

METHODS: A large panel of E. coli strains (n = 283) was used to assess both the specificity and the activity of bacteriophage LM33_P1. Immunology, biochemistry and genetics-based methods confirmed this specificity. Virology methods and sequencing were used to characterize this bacteriophage in vitro, while three relevant mouse models were employed to show its in vivo efficacy.

RESULTS: Bacteriophage LM33_P1 exclusively infects O25b E. coli strains with a 70% coverage on sequence types associated with high antibiotic resistance (ST131 and ST69). This specificity is due to an interaction with the LPS mediated by an original tail fibre. LM33_P1 also has exceptional intrinsic properties with a high adsorption constant and produces over 300 virions per cell in <10 min. Using animal pneumonia, septicaemia and urinary tract infection models, we showed the in vivo efficacy of LM33_P1 to reduce the bacterial load in several organs.

CONCLUSIONS: Bacteriophage LM33_P1 represents the first weapon that specifically and quickly kills O25b E. coli strains. Therapeutic approaches derived from this bacteriophage could be developed to stop or slow down the spread of the ST131-O25b:H4 drug-resistant clonal complex in humans.