Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
Scientific Fields
Diseases
Organisms
Applications
Technique
Starting Date
04
Jan 2016
Ending Date
31
Dec 2022
Status
Completed
Members
1
Structures
2

About

A common strategy of bacterial pathogens is active or passive uptake into host cells. There, they can localize within a bacterial containing vacuole (BCV) or access the host cytoplasm through BCV rupture. Hence, intracellular pathogens are often classified as vacuole-bound or cytoplasmic. Recently, this definition has been challenged by the discovery that many vacuole-bound pathogens, including Mycobacterium tuberculosis and Salmonella enterica, access the host cytoplasm, and by the insight that cytoplasmic bacteria, like Shigella flexneri or Listeria monocytogenes, do not always escape the BCV.

Despite this increasing complexity, a precise understanding lacks for why and how a pathogen “chooses” between a BCV or the cytoplasm and yet this is very important: because of differential pathogen sensing in membrane-bound and cytoplasmic compartments, intracellular localization leads to induction of different host responses. Therefore, a comprehensive understanding of the processes controlling BCV integrity is not only essential, but can provide new therapeutic targets. Our previous research has implemented innovative fluorescence microscopy to track the invasion steps of pathogenic bacteria. We have further integrated a large-volume, correlative, light/electron microscopy (CLEM) workflow via focused ion beam scanning electron microscopy. With this grant we compare the strategies of different intracellular pathogens to decipher the factors that shape their intracellular localization.

Fundings