Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Molecular microbiology

The trans-envelope architecture and function of the type 2 secretion system: new insights raising new questions.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular microbiology - 01 Jul 2017

Thomassin JL, Santos Moreno J, Guilvout I, Tran Van Nhieu G, Francetic O

Link to Pubmed [PMID] – 28486768

Link to DOI – 10.1111/mmi.13704

Mol Microbiol 2017 Jul; 105(2): 211-226

Nanomachines belonging to the type IV filament (Tff) superfamily serve a variety of cellular functions in prokaryotes, including motility, adhesion, electrical conductance, competence and secretion. The type 2 secretion system (T2SS) Tff member assembles a short filament called pseudopilus that promotes the secretion of folded proteins from the periplasm across the outer membrane of Gram-negative bacteria. A combination of structural, biochemical, imaging, computational and in vivo approaches had led to a working model for the assembled nanomachine. High-resolution cryo-electron microscopy and tomography provided the first view of several homologous Tff nanomachines in the cell envelope and revealed the structure of the outer membrane secretin channel, challenging current models of the overall stoichiometry of the T2SS. In addition, recent insights into exoprotein substrate features and interactions with the T2SS have led to new questions about the dynamics of the system and the role of the plasma membrane in substrate presentation. This micro-review will highlight recent advances in the field of type 2 secretion and discuss approaches that can be used to reach a mechanistic understanding of exoprotein recognition, integration into the machine and secretion.