Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • MD-PhD Student
  • Medical Staff
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of virology

Stealth replication of SARS-CoV-2 Omicron in the nasal epithelium at physiological temperature.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of virology - 19 Dec 2025

Fonseca BF, Robinot R, Michel V, Mendez A, Lebourgeois S, Chivé C, Jeger-Madiot R, Vaid R, Bondet V, Maloney E, Guivel-Benhassine F, Schwartz O, Duffy D, Mondal T, Gobaa S, Chakrabarti LA

Link to Pubmed [PMID] – 41416837

Link to DOI – 10.1128/jvi.02008-25

J Virol 2025 Dec; (): e0200825

The COVID-19 pandemic was marked by successive waves of SARS-CoV-2 variants with distinct properties. The Omicron variant that emerged in late 2021 showed a major antigenic shift and rapidly spread worldwide. Since then, Omicron-derived variants have maintained their global dominance, for reasons that remain incompletely understood. We report that the original Omicron variant BA.1 evolved several traits that converged in facilitating viral spread. First, Omicron displayed an early replicative advantage over previous variants when grown in a reconstructed human nasal epithelium model. The increase in Omicron replication was more marked at the physiologically relevant temperature of 33°C found in human nasal passages. Omicron also caused a decrease in epithelial integrity, as measured by transepithelial electrical resistance and caspase-3 activation. Furthermore, Omicron caused a more marked loss of motile cilia at 33°C than other variants, suggesting a capacity to impair mucociliary clearance. Omicron induced a broad transcriptional downregulation of ciliary genes but only a limited upregulation of host innate defense genes at 33°C. The lower production of type I and type III interferons in epithelia infected by Omicron compared to those infected by the Delta variant, at 33°C as well as 37°C, confirmed the increased capacity of Omicron to evade the innate antiviral response. Thus, Omicron combined replication speed, motile cilia impairment, and limited induction of innate antiviral responses when propagated in nasal epithelia at physiological temperature. Omicron has the capacity to propagate rapidly but stealthily in the upper respiratory tract, which likely contributed to the evolutionary success of this SARS-CoV-2 variant.The COVID-19 pandemic was initially characterized by a rapid succession of viral variants that emerged independently of each other, with each of these variants outcompeting the previous one. A major evolutionary shift occurred in late 2021, with the emergence of the highly divergent Omicron BA.1 variant. Since then, all the dominant SARS-CoV-2 variants have been derived from Omicron, for reasons that remain incompletely understood. Here, we compared the replication of SARS-CoV-2 variants in a human nasal epithelium model grown at 37°C and also at 33°C, a temperature that approximates that found in the nasal cavity. In this primary epithelial model, Omicron showed an early replicative advantage that was more marked at 33°C. However, Omicron triggered only a minimal antiviral interferon response at this temperature. Omicron could thus propagate rapidly while partly escaping the innate response at physiological nasal temperature, which helps account for the efficient dissemination of this variant worldwide.