Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
Scientific Fields
Diseases
Organisms
Applications
Technique

Published in npj Biofilms and Microbiomes - 30 Sep 2024

Grégoire Davignon, Natalia Pietrosemoli, Nadia Benaroudj, Marie-Estelle Soupé-Gilbert, Julie Cagliero, Élodie Turc, Mathieu Picardeau, Linda Guentas, Cyrille Goarant, Roman Thibeaux

Link to Pubmed [PMID] – 39349472

Link to HAL – hal-04719182

Link to DOI – 10.1038/s41522-024-00570-0

npj Biofilms and Microbiomes, 2024, 10 (1), pp.95. ⟨10.1038/s41522-024-00570-0⟩

Life-threatening Leptospira interrogans navigate a dual existence: surviving in the environment and infecting mammalian hosts. Biofilm formation is presumably an important survival strategy to achieve this process. Understanding the relation between biofilm and virulence might improve our comprehension of leptospirosis epidemiology. Our study focused on elucidating Leptospira’s adaptations and regulations involved in such complex microenvironments. To determine the transcriptional profile of Leptospira in biofilm, we compared the transcriptomes in late biofilms and in exponential planktonic cultures. While genes for motility, energy production, and metabolism were downregulated, those governing general stress response, defense against metal stress, and redox homeostasis showed a significant upsurge, hinting at a tailored defensive strategy against stress. Further, despite a reduced metabolic state, biofilm disruption swiftly restored metabolic activity. Crucially, bacteria in late biofilms or resulting from biofilm disruption retained virulence in an animal model. In summary, our study highlights Leptospira’s adaptive equilibrium in biofilms: minimizing energy expenditure, potentially aiding in withstanding stresses while maintaining pathogenicity. These insights are important for explaining the survival strategies of Leptospira, revealing that a biofilm lifestyle may confer an advantage in maintaining virulence, an understanding essential for managing leptospirosis across both environmental and mammalian reservoirs.