Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Melanie Blokesch, EPFL
Flagellated Vibrio cholerae
Publication : Molecular cell

The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular cell - 19 Aug 2005

Val ME, Bouvier M, Campos J, Sherratt D, Cornet F, Mazel D, Barre FX

Link to Pubmed [PMID] – 16109379

Mol Cell 2005 Aug; 19(4): 559-66

A major determinant of Vibrio cholerae pathogenicity, the cholera enterotoxin, is encoded in the genome of an integrated phage, CTXvarphi. CTXvarphi integration depends on two host-encoded tyrosine recombinases, XerC and XerD. It occurs at dif1, a 28 bp site on V. cholerae chromosome 1 normally used by XerCD for chromosome dimer resolution. The replicative form of the phage contains two pairs of binding sites for XerC and XerD in inverted orientations. Here we show that in the single-stranded genome of the phage, these sites fold into a hairpin structure, which creates a recombination target for XerCD. In the presence of XerD, XerC can catalyze a single pair of strand exchanges between this target and dif1, resulting in integration of the phage. This integration strategy explains why the rules that normally apply to tyrosine recombinase reactions seemed not to apply to CTXvarphi integration and, in particular, why integration is irreversible.