Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Research in microbiology

The periplasmic coiled coil formed by the assembly platform proteins PulL and PulM is critical for function of the Klebsiella type II secretion system.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Research in microbiology - 02 May 2023

Li Y, Santos-Moreno J, Francetic O

Link to Pubmed [PMID] – 37141929

Link to DOI – 10.1016/j.resmic.2023.104075

Res Microbiol 2023 May; (): 104075

Bacteria use type II secretion systems (T2SS) to secrete to their surface folded proteins that confer diverse functions, from nutrient acquisition to virulence. In the Klebsiella species, T2SS-mediated secretion of pullulanase (PulA) requires assembly of a dynamic filament called the endopilus. The inner membrane assembly platform (AP) subcomplex is essential for endopilus assembly and PulA secretion. AP components PulL and PulM interact with each other through their C-terminal globular domains and transmembrane segments. Here, we investigated the roles of their periplasmic helices, predicted to form a coiled coil, in assembly and function of the PulL-PulM complex. PulL and PulM variants lacking these periplasmic helices were defective for interaction in the bacterial two-hybrid (BACTH) assay. Their functions in PulA secretion and assembly of PulG subunits into endopilus filaments were strongly reduced. Interestingly, deleting the cytoplasmic peptide of PulM nearly abolished the function of variant PulMΔN and its interaction with PulG, but not with PulL, in the BACTH assay. Nevertheless, PulL was specifically proteolyzed in the presence of the PulMΔN variant, suggesting that PulM N-terminal peptide stabilizes PulL in the cytoplasm. We discuss the implications of these results for the T2S endopilus and type IV pilus assembly mechanisms.