Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : FEMS microbiology reviews

The molecular mechanism of bacterial lipoprotein modification–how, when and why?

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in FEMS microbiology reviews - 10 Feb 2015

Buddelmeijer N

Link to Pubmed [PMID] – 25670733

FEMS Microbiol. Rev. 2015 Mar;39(2):246-61

Posttranslational modification of proteins by lipidation is a common process in biological systems. Lipids provide protein stability, interaction with other membrane components, and in some cases, due to reversibility of the process, a mechanism for regulating protein localization and function. Bacterial lipoproteins possess fatty acids at their amino-termini that are derived from phospholipids, and this lipid moiety anchors the proteins into the membrane. These lipids, as is the case for lipopolysaccharides and lipoteichoic acids, play an important role in signaling of the innate immune system through the interaction with Toll-like receptors. Over the past three years, tremendous progress has been made in understanding the mechanism by which lipoproteins become lipidated. Advanced methodology in mass spectrometry, proteomics and genome-wide analyses allowed precise characterization of lipoprotein modifications and the identification of the enzymes catalyzing the reactions in diverse bacterial species. This review will highlight new findings on bacterial lipoprotein modification with focus on the reaction mechanisms and the role of lipoproteins in cell envelope homeostasis.