Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Immunological reviews

The intrathymic crossroads of T and NK cell differentiation

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Immunological reviews - 01 Nov 2010

Klein Wolterink RG, García-Ojeda ME, Vosshenrich CA, Hendriks RW, Di Santo JP

Link to Pubmed [PMID] – 20969589

Immunol. Rev. 2010 Nov;238(1):126-37

T lymphocytes depend on the thymic microenvironment for initiation of the T-cell developmental program. As the progenitors in the thymus have lost the capacity to self-renew, this process depends on the constant influx of hematopoietic progenitors that originate in the bone marrow. Nevertheless, thymic emigrants are heterogeneous and retain developmental plasticity for both the myeloid and lymphoid lineages. It is the role of the thymic microenvironment to steer these uncommitted progenitors toward a T-cell fate. Still, the thymus also generates a unique population of thymic NK cells, thus raising the question of how the T versus NK lymphoid cell fate is determined intrathymically. Many factors have been implicated in the developmental pathways in the thymus, and the processes are characterized by both subtle and not so subtle modifications in gene expression. In this review, we consider the crucial factors governing lineage determination of T cells versus NK cells from bi-potent thymic NK/T precursors. Recent reports have shed new light on the complex interactions of cytokines and transcription factors at different cell fate decision branch points in thymopoiesis. We discuss the implications of these findings and propose a model that may be applicable at this critical thymic NK/T juncture.