Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of molecular biology

Sugar specificity of bacterial CMP kinases as revealed by crystal structures and mutagenesis of Escherichia coli enzyme

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of molecular biology - 01 Feb 2002

Bertrand T, Briozzo P, Assairi L, Ofiteru A, Bucurenci N, Munier-Lehmann H, Golinelli-Pimpaneau B, Bârzu O, Gilles AM

Link to Pubmed [PMID] – 11827479

J. Mol. Biol. 2002 Feb;315(5):1099-110

Bacterial cytidine monophosphate (CMP) kinases are characterised by an insert enlarging their CMP binding domain, and by their particular substrate specificity. Thus, both CMP and 2′-deoxy-CMP (dCMP) are good phosphate acceptors for the CMP kinase from Escherichia coli (E. coli CMPK), whereas eukaryotic UMP/CMP kinases phosphorylate the deoxynucleotides with very low efficiency. Four crystal structures of E. coli CMPK complexed with nucleoside monophosphates differing in their sugar moiety were solved. Both structures with CMP or dCMP show interactions with the pentose that were not described so far. These interactions are lost with the poorer substrates AraCMP and 2′,3′-dideoxy-CMP. Comparison of all four structures shows that the pentose hydroxyls are involved in ligand-induced movements of enzyme domains. It also gives a structural basis of the mechanism by which either ribose or deoxyribose can be accommodated. In parallel, for the four nucleotides the kinetic results of the wild-type enzyme and of three structure-based variants are presented. The phosphorylation rate is significantly decreased when either of the two pentose interacting residues is mutated. One of these is an arginine that is highly conserved in all known nucleoside monophosphate kinases. In contrast, the other residue, Asp185, is typical of bacterial CMP kinases. It interacts with Ser101, the only residue conserved in all CMP binding domain inserts. Mutating Ser101 reduces CMP phosphorylation only moderately, but dramatically reduces dCMP phosphorylation. This is the first experimental evidence of a catalytic role involving the characteristic insert of bacterial CMP kinases. Furthermore, this role concerns only dCMP phosphorylation, a feature of this family of enzymes.