Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : The Journal of biological chemistry

Structural and mechanistic implications of metal binding in the small heat-shock protein αB-crystallin

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 15 Nov 2011

Mainz A, Bardiaux B, Kuppler F, Multhaup G, Felli IC, Pierattelli R, Reif B

Link to Pubmed [PMID] – 22090033

J. Biol. Chem. 2012 Jan;287(2):1128-38

The human small heat-shock protein αB-crystallin (αB) rescues misfolded proteins from irreversible aggregation during cellular stress. Binding of Cu(II) was shown to modulate the oligomeric architecture and the chaperone activity of αB. However, the mechanistic basis of this stimulation is so far not understood. We provide here first structural insights into this Cu(II)-mediated modulation of chaperone function using NMR spectroscopy and other biophysical approaches. We show that the α-crystallin domain is the elementary Cu(II)-binding unit specifically coordinating one Cu(II) ion with picomolar binding affinity. Putative Cu(II) ligands are His(83), His(104), His(111), and Asp(109) at the dimer interface. These loop residues are conserved among different metazoans, but also for human αA-crystallin, HSP20, and HSP27. The involvement of Asp(109) has direct implications for dimer stability, because this residue forms a salt bridge with the disease-related Arg(120) of the neighboring monomer. Furthermore, we observe structural reorganization of strands β2-β3 triggered by Cu(II) binding. This N-terminal region is known to mediate both the intermolecular arrangement in αB oligomers and the binding of client proteins. In the presence of Cu(II), the size and the heterogeneity of αB multimers are increased. At the same time, Cu(II) increases the chaperone activity of αB toward the lens-specific protein β(L)-crystallin. We therefore suggest that Cu(II) binding unblocks potential client binding sites and alters quaternary dynamics of both the dimeric building block as well as the higher order assemblies of αB.

http://www.ncbi.nlm.nih.gov/pubmed/22090033