Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Journal of immunology (Baltimore, Md. : 1950)

Staphylococcus aureus Adenosine Inhibits sPLA2-IIA-Mediated Host Killing in the Airways

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of immunology (Baltimore, Md. : 1950) - 22 Apr 2015

Pernet E, Brunet J, Guillemot L, Chignard M, Touqui L, Wu Y

Link to Pubmed [PMID] – 25904549

J. Immunol. 2015 Jun;194(11):5312-9

Staphylococcus aureus is a common cause of bacterial infections in respiratory diseases. It secretes molecules to dampen host immunity, and the recently identified adenosine is one of these molecules. The type IIA secretory phospholipase A2 (sPLA2-IIA) is a host protein endowed with antibacterial properties, especially against Gram-positive bacteria such as S. aureus. However, the role of adenosine in sPLA2-IIA-mediated S. aureus killing by host is still unknown. The present studies showed that the S. aureus mutant lacking adenosine production (∆adsA strain) increased sPLA2-IIA expression in guinea pig airways and was cleared more efficiently, compared with the wild-type strain. S. aureus ∆adsA strain induced sPLA2-IIA expression by alveolar macrophages after phagocytic process via NOD2-NF-κB-dependent mechanism. However, S. aureus adenosine (wild-type and adsA-complemented strains) and exogenous adenosine downregulated S. aureus phagocytosis by alveolar macrophages, leading to inhibition of sPLA2-IIA expression. This occurred through inhibition of p38 phosphorylation via adenosine receptors A2a-, A2b-, and protein kinase A-dependent pathways. Taken together, our studies suggest that, in the airway, S. aureus escapes sPLA2-IIA-mediated killing through adenosine-mediated inhibition of phagocytosis and sPLA2-IIA expression.