Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Perthame&Millot
saber_background_image
Publication : Scientific reports

Single-cell RNA sequencing reveals developmental heterogeneity among Plasmodium berghei sporozoites.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Scientific reports - 22 Feb 2021

Ruberto AA, Bourke C, Merienne N, Obadia T, Amino R, Mueller I,

Link to Pubmed [PMID] – 33619283

Link to DOI – 412710.1038/s41598-021-82914-w

Sci Rep 2021 Feb; 11(1): 4127

In the malaria-causing parasite’s life cycle, Plasmodium sporozoites must travel from the midgut of a mosquito to the salivary glands before they can infect a mammalian host. However, only a fraction of sporozoites complete the journey. Since salivary gland invasion is required for transmission of sporozoites, insights at the molecular level can contribute to strategies for malaria prevention. Recent advances in single-cell RNA sequencing provide an opportunity to assess sporozoite heterogeneity at a resolution unattainable by bulk RNA sequencing methods. In this study, we use a droplet-based single-cell RNA sequencing workflow to analyze the transcriptomes of over 8000 Plasmodium berghei sporozoites derived from the midguts and salivary glands of Anopheles stephensi mosquitoes. The detection of known marker genes confirms the successful capture and sequencing of samples composed of a mixed population of sporozoites. Using data integration, clustering, and trajectory analyses, we reveal differences in gene expression profiles of individual sporozoites, and identify both annotated and unannotated markers associated with sporozoite development. Our work highlights the utility of a high-throughput workflow for the transcriptomic profiling of Plasmodium sporozoites, and provides new insights into gene usage during the parasite’s development in the mosquito.