Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Sandrine Etienne-Manneville
Photo prise à l'avant (dans la protrusion) d'astrocytes primaires de rat en migration. Marquage par immunofluorescence montrant en rouge, p150 Glued, une protéine associée aux extrémités 'plus' des microtubules et en vert la tubuline des microtubules. La photographie montre l'accumulation de p150 Glued à l'avant des cellules en migration, où la protéine pourrait participer à l'ancrage des microtubules à la membrane plasmique. Pour essayer de corriger, les dérèglements observés lors de la migration des cellules d'astrocytes tumuraux ou gliomes on cherche à connaitre les mécanismes moléculaires fondamentaux qui controlent la polarisation et la migration cellulaires.
Publication : Protein engineering

Prolonged display or rapid internalization of the IgG-binding protein ZZ anchored to the surface of cells using the diphtheria toxin T domain

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Protein engineering - 01 Jun 2001

Nizard P, Chenal A, Beaumelle B, Fourcade A, Gillet D

Link to Pubmed [PMID] – 11477224

Protein Eng. 2001 Jun;14(6):439-46

We have shown previously that the diphtheria toxin transmembrane domain (T) may function as a membrane anchor for soluble proteins fused at its C-terminus. Binding to membranes is triggered by acidic pH. Here, we further characterized this anchoring device. Soluble proteins may be fused at the N-terminus of the T domain or at both extremities, without modifying its membrane binding properties. This allows one to choose the orientation of the protein to be attached to the membrane. Maximum binding to the cell surface is reached within 1 h. Anchoring occurs on cells previously treated with proteinase K, suggesting that T interacts with the lipid phase of the membrane without the help of cell surface proteins. Binding does not permeabilize cells or affect cell viability, despite the fact that it permeabilizes liposomes and alters their structure. When attached to L929 fibroblasts, the proteins are not internalized and remain displayed at their surface for more than 24 h. When bound to K562 myeloid cells, the molecules are internalized and degraded. Thus, depending on the cell type, soluble proteins may be anchored to the surface of cells by the T domain for an extended time or directed towards an internalization pathway.

https://www.ncbi.nlm.nih.gov/pubmed/11477224