Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of immunology (Baltimore, Md. : 1950)

Prolonged antigen storage endows merocytic dendritic cells with enhanced capacity to prime anti-tumor responses in tumor-bearing mice

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of immunology (Baltimore, Md. : 1950) - 18 Aug 2010

Reboulet RA, Hennies CM, Garcia Z, Nierkens S, Janssen EM

Link to Pubmed [PMID] – 20720209

J. Immunol. 2010 Sep;185(6):3337-47

Tumor cell vaccination with irradiated autologous tumor cells is a promising approach to activate tumor-specific T cell responses without the need for tumor Ag identification. However, uptake of dying cells by dendritic cells (DCs) is generally a noninflammatory or tolerizing event to prevent the development of autoreactive immune responses. In this study, we describe the mechanisms that confer the potent T cell priming capacity of a recently identified a population of DCs (merocytic DCs [mcDCs]) that potently primes both CD8(+) and CD4(+) T cells to cell-associated Ags upon uptake of apoptotic cells. mcDCs acquired cell-associated materials through a process of merocytosis that is defined by the uptake of small particles that are stored in nonacidic compartments for prolonged periods, sustained Ag presentation, and the induction of type I IFN. T cells primed by mcDCs to cell-associated Ags exhibit increased primary expansion, enhanced effector function, and increased memory formation. By using transgenic T cell transfer models and endogenous models, we show that treatment of tumor-bearing mice with mcDCs that have been exposed to dying tumor cells results in tumor suppression and increased host survival through the activation of naive tumor-specific CD8(+) T cells as well as the reinvigoration of tumor-specific T cells that had been rendered nonresponsive by the tumor in vivo. The potent capacity of mcDCs to prime both CD4(+) and CD8(+) T cells to cell-associated Ags under immunosuppressive conditions makes this DC subset an attractive target for tumor therapies as well as interventional strategies for autoimmunity and transplantation.

https://www.ncbi.nlm.nih.gov/pubmed/20720209