Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Clifton E. Barry III, Ph.D., NIAID, NIH.
Colorized scanning electron micrograph of Mycobacterium tuberculosis
Publication : Genome dynamics

Pathogenomics of mycobacteria

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Genome dynamics - 19 Aug 2009

Gutierrez MC, Supply P, Brosch R

Link to Pubmed [PMID] – 19696503

Genome Dyn 2009;6:198-210

Among the 130 species that constitute the genus Mycobacterium, the great majority are harmless saprophytes. However, a few species have very efficiently adapted to a pathogenic lifestyle. Among them are two of the most important human pathogens, Mycobacterium tuberculosis and Mycobacterium leprae, and one emerging pathogen, Mycobacterium ulcerans. Their slow growth, virulence for humans and particular physiology make these organisms very difficult to work with, however the need to develop new strategies in the fight against these pathogens requires a clear understanding of their genetic and physiological repertoires and the mechanisms that have contributed to their evolutionary success. The rapid development of mycobacterial genomics following the completion of the Mycobacterium tuberculosis genome sequence provides now the basis for finding the important factors distinguishing pathogens and non-pathogens. In this chapter we will therefore present some of the major insights that have been gained from recent studies, with focus on the roles played by various evolutionary processes in shaping the structure of mycobacterial genomes and pathogen populations.