Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

Multiple particle tracking in 3-D+t microscopy: method and application to the tracking of endocytosed quantum dots

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in IEEE transactions on image processing : a publication of the IEEE Signal Processing Society - 01 May 2006

Genovesio A, Liedl T, Emiliani V, Parak WJ, Coppey-Moisan M, Olivo-Marin JC

Link to Pubmed [PMID] – 16671288

IEEE Trans Image Process 2006 May;15(5):1062-70

We propose a method to detect and track multiple moving biological spot-like particles showing different kinds of dynamics in image sequences acquired through multidimensional fluorescence microscopy. It enables the extraction and analysis of information such as number, position, speed, movement, and diffusion phases of, e.g., endosomal particles. The method consists of several stages. After a detection stage performed by a three-dimensional (3-D) undecimated wavelet transform, we compute, for each detected spot, several predictions of its future state in the next frame. This is accomplished thanks to an interacting multiple model (IMM) algorithm which includes several models corresponding to different biologically realistic movement types. Tracks are constructed, thereafter, by a data association algorithm based on the maximization of the likelihood of each IMM. The last stage consists of updating the IMM filters in order to compute final estimations for the present image and to improve predictions for the next image. The performances of the method are validated on synthetic image data and used to characterize the 3-D movement of endocytic vesicles containing quantum dots.

http://www.ncbi.nlm.nih.gov/pubmed/16671288