Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : The Journal of biological chemistry

Membrane potential-generating malate (MleP) and citrate (CitP) transporters of lactic acid bacteria are homologous proteins. Substrate specificity of the 2-hydroxycarboxylate transporter family

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The Journal of biological chemistry - 18 Jul 1997

Bandell M, Ansanay V, Rachidi N, Dequin S, Lolkema JS

Link to Pubmed [PMID] – 9218448

J. Biol. Chem. 1997 Jul;272(29):18140-6

Membrane potential generation via malate/lactate exchange catalyzed by the malate carrier (MleP) of Lactococcus lactis, together with the generation of a pH gradient via decarboxylation of malate to lactate in the cytoplasm, is a typical example of a secondary proton motive force-generating system. The mleP gene was cloned, sequenced, and expressed in a malolactic fermentation-deficient L. lactis strain. Functional analysis revealed the same properties as observed in membrane vesicles of a malolactic fermentation-positive strain. MleP belongs to a family of secondary transporters in which the citrate carriers from Leuconostoc mesenteroides (CitP) and Klebsiella pneumoniae (CitS) are found also. CitP, but not CitS, is also involved in membrane potential generation via electrogenic citrate/lactate exchange. MleP, CitP, and CitS were analyzed for their substrate specificity. The 2-hydroxycarboxylate motif R1R2COHCOOH, common to the physiological substrates, was found to be essential for transport although some 2-oxocarboxylates could be transported to a lesser extent. Clear differences in substrate specificity among the transporters were observed because of different tolerances toward the R substituents at the C2 atom. Both MleP and CitP transport a broad range of 2-hydroxycarboxylates with R substituents ranging in size from two hydrogen atoms (glycolate) to acetyl and methyl groups (citromalate) for MleP and two acetyl groups (citrate) for CitP. CitS was much less tolerant and transported only citrate and at a low rate citromalate. The substrate specificities are discussed in the context of the physiological function of the transporters.

https://www.ncbi.nlm.nih.gov/pubmed/9218448